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Abstract. Fractional Brownian motion (FBM) is a generalization of the usual Brownian motion. 
A path integral representation that has recently been suggested for it is shown to be not for the 
FBM but for a different generalization of the Brownian motion. A new path integral repmentation 
is given and its measure has fractional derivatives of the path in it. The measure shows that the 
process is Gaussian but is. in general, non-Markovian, even though Brownian motion itself is 
Markovian. It is shown how the propagator for the motion of free FBM may be evaluated. Tbis 
is somewhat more complex than for the usual path integrals, due to the o c c u m c e  of fractional 
derivatives. We also find the propagator in the presence of a linear absorption (potential). and 

~ ~~ 

for m~ on a ring. 

1. Introduction 

Brownian motion has served as a model for several problems in chemical physics. The 
path (Wiener) integral representation of the time evolution of its probability distribution 
function is quite well known. A generalization of the Brownian motion, referred to as 
fractional Brownian motion (mM) has also been suggested and is being recognized as a 
model of wide utility (Mandelbrot and van Ness 1968, Fan et al 1991, Cherayil and Biswas 
1993, Giona and Roman 1992, Roman and Giona 1992). However, the correct path integral 
representation of the probability distribution function for the FBM does not seem to exist in 
the literature. 

In one dimension, the motion is defined as follows. The position x(t) of the walker at 
the time f ,  who started at X O  at the time t = 0, is given by 

~ ( t )  - X o  = D-"$(t) 

01 is a parameter that may take non-integral values greater than zero. D = d/dt and D-a 
is the fractional integral of order n (Widder 1971, Srivastava and Manocha 1984) defined 
by the second line in equation ( l ) . ~  $ ( t )  is the white noise, having the autocorrelation 
function ( $ ( t ) c ( s ) )  = 8(t - s). The usual Brownian motion would correspond to 01 = 1. 
Thus x(f) - XO is thefractional integral oforder U, ofthe usual white noise. Cherayil and 
Biswas (1993) have suggested that the path followed by the three-dimensional version of 
the FBM may be taken as a model for the configuration of a polymer molecule in solution. 
With this aim, a path integral representation for FBM has been proposed by them. Their 

0305-4470/95/154305+07$19.50 @ 1995 IOP Publishing Ltd 4305 



4306 K L Sebastian 

analysis is based upon the results of Maccone (1981a, b) who gave the following expression 
for the autocorrelation function (in our notation): 

The subscript M stands for Maccone. Note that our (Y is equal to (h  + 1/2) of Maccone 
(1981a, b). Cherayil and Biswas (1993) continued this work and developed a path integral 
representation for a Brownian motion which has this autocorrelation function. While their 
development is fully correct, C&(t, s) is not the correct autocorrelation function for the FBM. 
Using the definition of equation (I), we find the correct autocorrelation function as below: 

is the hypergeometric function (Magnus et al 1966). If t = s and a > 1/2, then using 
thevaluezF~(I,l-or;l+cr; l )=a / (Zcf - l )  gives 

If (Y < 1/2, then the equal time correlation function diverges, as may be seen directly from 
equation (4). Therefore, we shall consider only the case where U > 1/2. Furthermore, we 
shall put the reshiction a! < 1 in this paper. The case U > 1 is discussed briefly towards the 
end of section 2. As the correct correlation function of equation (4) is more complicated 
than the one given by Maccone (1981a), the path integral representation for the FBM is more 
complex than the one given by Cherayil and Biswas (1993). However, a generalization of 
Brownian motion X M ( ~ )  defined by 

has the autocorrelation function of Maccone (Cf,(t,s)). Therefore, the path integral 
representation and the associated diffusion equation developed by Cherayil and Biswas 
(1993) are for XM(t)  and not for the one defined by equation (1). 

As the FBM is of considerable interest, we now proceed to construct the path integral 
representation for it. For this, we formally invert the equation (1) to get 

D'8x(t) = F(t). (8) 

We have adopted the notation s x ( t )  = x(t )  - Xo. D' is the fractional derivative (Widder 
1971, Srivastava and Manocha 1984) and is defined by Dm = DDu-' for 0 c (Y c 1. Note 
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also that this is not the same as D'-'D, as may be seen by allowing the two operators 
to operate upon any function that is a constant. As the measure in the path integral 
representation for the white noise (0) has exp(-fJdtfz(t)] in it, and as x(t) is linearly 
related to the measure for x ( t )  is clearly proportional to exp(-f Jd t  [D"8x(t)l2}. So 
we write the probability of finding the particle at X' at the time T as 

which is the desired path integral representation for the FBM. We now show how this 
propagator and that for certain other cases may be calculated. 

2. Propagator for the free particle 

The path integral of equation (9) may be evaluated by techniques similar to the ones used 
for the usual path integrals (Feynman and Hibbs 1965). The procedure is somewhat more 
complex than usual, due to the occurrence of the fractional derivatives in the expressions, 
and therefore we give the details. As the first step in the evaluation, we change over to the 
new path variable y(t), defined by 

8 x ( t )  = s a @ )  + y ( t )  (10) 

where S?( t )  is the 'extremum path', for which the 'action' 

T 
S = f 1 dt ~ a 8 x ( t ) ] 2  

is an extremum. It is taken to satisfy the boundary conditions 

6?(0) = 0 and SX(T) = X r ~ -  Xo. (11) 

Therefore, the path variable y(t) has to obey y(0) = y(T) = 0. Substituting equation (IO) 
into the action, one finds the extremum path by putting the term linear in y(t) to be equal 
to zero. The term is found to be 

r 
SS = 1 dtDa61?(t)DUy(t). (12) 

Using the definition D" = DDu-', and integrating by parts, noting that D'-'y(0) = 0, 
leads to 

Remembering the definition of 
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we can rearrange the right-hand side to give 

If 8 i ( t )  is to be the extremum path, then SS should vanish for arbitrary y(t) .  Hence 

where TDU-l is defined by 

for any f ( t ) .  The change in the path variable in the equation (10) leads to 

T 
= exp { - f 1 dt 

2.1. The extremumpath s i @ )  
We now solve equation (15), subject to the boundary conditions of (11). Using 
definition (16), one can easily prove that T D - ~  TD'-l = TD-l. Therefore, we operate 
on both sides of equation (15) with TD-'. As this is an integral operator, it is only natural 
that one has to add something similar to the constant that results in the usual integration D-I. 
The term that is to be added here, however, is not aconstant, but the function -C(T-t)=-' ,  
where C is a constant. It may easily be verified that raU(T - t)'-l = 0. Therefore, 

On evaluation, TD-(L(T - t)-" = r(1 - 0 1 ) .  Hence equation (18) may be written as 

lT dt D'*Gi(t) = D"Z(T) - C(T - t)'-l 
resulting in 

Da8i(t) = C(T - t)cl-l. 

We now apply D-= to both sides to get 

8x0) = CD-'(T - t)=-l +Cifu-' .  

C, is a constant. Written in detail, 
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The use of the boundary conditions of equation (11) gives 

CI = 0 and C = (X, - Xo)r(01)(2a - l)T'-ZU. (23) 

Hence, 

S.?(t) = (X, - Xo)(h - l)T'-& ds ( t  - s)@-'(T - s)~-' (24) L.t 
is the classical path. Equations (23) and (20) may be used to get the action for the classical 
path to be 

Using tiiis result in (9), we get the propagator 

Now it is an easy matter to find G(0, TjO,O)-it has to be chosen so that 
l-:dXr G(XT, ?'I&, 0) = 1. ?ais gives 

This result, however, is identical to that of Cherayil and Biswas (1993). This is not at dl 
surprising-the propagator for a Gaussian random function is determined only by the equal 
time correlation function, which is the same for x ( t )  and x&). However, the detailed 
behaviour of our paths and those of Cherayil and Biswas (1993) will be very different, as 
may be shown by calculating the high-order conelation functions (Sebastian 1994). Also, 
using the fact that Sx(0) = 0, one can show that Da8x(t) = D"-'DSx = D'"dx/dt. 
Hence, adopting the notation X = dx/dt, one can rewrite the measure of the path integral 
as exp(-4 r,' dt [D'-'.i @)I2}, which makes its connection with the usual path integrals 
clearer. Written in more detail it is exp{-i J,'ds J,'dSl C(s, s , )x(s)   SI)} where 

This means that the function x(t) is not Markovian unless a = 1, which is to be compared 
with the fact that the function of Cherayil and Biswas (1993) is Markovian. 

1 briefly. For this, the basic equation Dux@) = $( t )  
may be written as DDu-'x(t) = t( t)  and on integration, 

Now we consider the case 2 z a 

Therefore the walk is specified only by giving values of x ( 0 )  and D'-'x(O), in contrast to 
the case where 01 < 1, where only x(0) is enough. We shall not discuss this further in this 
paper. 
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3. Propagator for FBM with linear absorption 

In this section, we consider the path integral 

which corresponds to absorption of the particle at a rate proportional to x at the position x ,  
the proportionality factor being time dependent. As before, finding the classical path leads 
to 

(30) DaGi(t) = ~ D - ~ p ( t )  + C(T - t)u-'. 

D"&?(t) = - rw ~ T d S a - s ) " - ~ p ( s ) + C ( T - t ) ' - ' .  

Written in more detail, this is 

(31) 

This equation is somewhat different from the usual equations in that the value of D" 8Z( t )  
at the time t depends on the behaviour of the absorbing term p ( s )  for t  i s < T and hence 
the equation is not causal. This again is not surprising-this is a general feature of this 
type of path integral (Sebastian 1982). We now consider the case where p ( s )  = a constant, 
which we denote as p .  Then we get 

GP(0) = 0 implies CI = 0 and putting the condition SP(T) =-XT - X o  enables us to 
determine the value of C. Makin,. the same change as in equation (10) gives 

G'(X,,TIXo,O) =exp( - f~ 'd t [D '6 i ( t ) j2 -  L T d t p P ( t ) } G ( O ,  Tl0,O). (33) 

Evaluating the action for the classical path then gives 

G'(XT, TIXo, 0) = G G T ,  TKO,  0)  exp(-alp - azp21. (34) 

a1 = ( X 0 ( 1 - 2 0 r + & ~ ) - X ~ ( l - 2 0 r ) ] ~  and az=-  ~ ( 1  + 20r)rqi +U). 

with 
T p+a 

4. FBM on a ring 

With the expression for the propagator for FBM on a line, it is an easy matter to write the 
propagator for a ring. It is 

(35) 
6 is the angle coordinate and n is the winding number of the path around the ring. 

function is also evaluated in a paper by Wyss (1991). 
After the completion of this work, it was pointed out to me that the correct correlation 



Path integral representation for fractional Brownian motion 4311 

Acknowledgments 

I wish to thank Professor S K Rangarajan, to whom I owe so much. I am grateful to the 
Alexander von Humboldt Foundation for supporting my work by the gift of a computer 
system. 

References 

Chemyil B J and Biswas P 1993 J. Chpm Phys. 99 9230 
Fan L T. Neogi D and Yashima M 1991 Elemenrory Inrmduction ro Sparioinnd Temporal Fractals ( L e t w e  Notes 

Feynman R P and Hibbs A R 1965 Quantum Mcchmics and Path Inregrab (New York McGraw-Hill) 
Giona M and Roman H E 1992 J. Phys. A: M a t i  Gen 25 2093 
Macmne G 1981a Nuovo Cimento B 61 229 - 1981b Nuovo C i m m o  B 65 259 
Mapus M. Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functionc ojMathematica1 

Mandelbrot B B and van Ness J W 1968 SIAM Rev. 10 422 
Roman H E  and Giona M 1992 J.  Phys. A: Moth Gen. 25 2107 
Sebastian K L 1982 Phys. Lett. 91A 387 
- 1994 unpublished results 
Srivastavn H M and Manocha H L 1984 A Treorise on Generating Funerions (Chichester: Ellis Honvood) 
Widder D V 1971 An Inrmduetion ro Tmnrform Theory (New York Academic) 
Wyss W 1991 Found. P@s. Lett. 4 235 

in Chpm'my 55) ed G Be& (Berlin: Springer) 

Physics (New York Springer) 


